식물이 녹색을 띠는 진짜 이유는?
ㆍ 햇빛 과다 노출로부터 유기체 보호
잎에 내리쬐는 햇볕이 갑자기 변할 때,
식물은 태양 에너지의 급증으로부터 스스로를 보호해야 합니다.
이런 변화에 대처하기 위해,
식물에서 박테리아에 이르기까지
광합성을 하는 유기체는 수많은 전략을 개발했습니다.
그러나 과학자들은 그와 관련한 기본 설계 원리를 식별해 내지 못했습니다.
최근 미국 캘리포니아대(UCR) 연구팀이 이끄는 국제 협동연구팀은 많은 광합성 유기체들에게서 나타나는,
광합성을 위한 빛 확보의 일반적 특성을 재현할 수 있는 모델을 생성해 이 문제에 대한 실마리를 풀었습니다.
이 연구는 과학저널 ‘사이언스’(Science) 26일 자에 발표됐으며,
광합성 유기체, 특정 색의 빛만을 흡수
빛 수확(light harvesting)은 단백질-결합 엽록소 분자가 태양 에너지를 모으는 일입니다.
잘 알려져 있다시피 광합성(photosynthesis)은
녹색 식물과 다른 유기체들이 햇빛을 이용해 이산화탄소와 물로부터 식량을 합성해 내는 과정으로,
빛 에너지 수확은 햇빛 흡수로부터 시작됩니다.
연구를 이끈 UCR 물리 및 천문학부 나타니엘 게이버(Nathaniel M. Gabor) 부교수는
“우리 모델은 광합성 유기체들이 매우 특정한 색의 빛만을 흡수함으로써,
태양 에너지의 갑작스러운 변화나 혹은 잡음(noise)으로부터 자동적으로 자신을 보호하고,
결과적으로 놀랍도록 효율적인 전력 변환을 한다는 사실을 나타낸다”고 설명했습니다.
그는 “녹색 식물은 녹색으로 보이고 자주색 박테리아는 자주색으로 나타나는데,
그 이유는 이들이 흡수하는 빛스펙트럼의 특정 영역이 빠르게 변화하는
태양에너지로부터 자신들을 보호하기에 적합하기 때문”이라고 덧붙였습니다.
태양전지 성능 향상에도 응용 가능
게이버 교수는 10여 년 전 코넬대 박사과정생으로 있을 때부터 광합성 연구에 관심을 두기 시작했습니다.
그는 식물이 왜 가장 강한 태양광인 녹색 광을 거부하는지 의아하게 여겼습니다.
나뭇잎이 녹색으로 보이는 것은 녹색을 흡수하지 않고 반사하기 때문입니다.
이후 수년 동안 그는 전 세계 물리학자 및 생물학자들과 함께 일하며
통계학적 방법과 광합성의 양자 생물학에 대해 더 많이 공부했습니다.
논문 공저자이자 영국 글래스고 대학의 저명 식물학자인
리처드 코그델(Richard Cogdell) 교수는 게이버 교수에게, 입사되는 태양빛 스펙트럼에
매우 다른 환경에서 자라는 많은 광합성 유기체들이 포함되도록 모델의 범위를 더욱 넓히라고 권고했습니다.
코그델 교수는
“흥미롭게도 우리는 이 모델이 녹색식물 이외의 다른 광합성 유기체들에서도 잘 작동되는 한편,
광합성 광 수확의 일반적이고 기본적인 속성을 식별해 낸다는 사실을 보여줄 수 있었다”고 말했습니다.
또한 입사 태양 스펙트럼과 관련해 태양에너지를 흡수할 스펙트럼 위치를 선택함으로써,
어떻게 출력 노이즈를 최소화할 수 있고,
이는 태양전지의 성능을 향상시키는데 활용될 수 있음을 보여주었다는 것입니다.
논문 공저자로 광합성의 1차 물리적 과정을 담당한
네덜란드 암스테르담 자유대(Vrije Universiteit Amsterdam) 링크 반 그론델(Rienk van Grondelle) 교수는
이번 연구에서 어떤 광합성 시스템의 흡수 스펙트럼은 노이즈를 제거하고 저장 에너지를 최대화할 수 있는
스펙트럼 여기(excitation) 영역을 선택한다는 사실을 발견했다고 밝혔습니다.
그론델 교수는
“이 단순한 설계 원리는 인간이 만드는 태양전지 설계에도 적용될 수 있다”고 말했습니다.
연구팀에 따르면, 광합성 유기체들은 특정한 색의 빛만을 흡수해
태양 에너지의 갑작스러운 변화나 잡음(noise)으로부터 자동적으로 자신을 보호하고,
결과적으로 놀랍도록 효율적인 전력 변환을 합니다.
태양 과다 노출 방지 전략
게이버 교수는 식물을 비롯한 다른 광합성 유기체들은 에너지 방출 분자 기전으로부터
태양을 추적하는 잎사귀의 물리적 운동에 이르기까지,
태양에 과다 노출돼 나타나는 손상을 방지하기 위해 많은 다양한 전략을 가지고 있다고 설명했습니다.
식물들은 또한 자외선도 효과적으로 차단할 수 있다는 것.
그는 “복잡한 광합성 과정에서 과다 노출로부터 유기체를 보호하는 것이,
성공적인 에너지 생산의 원동력으로, 이것이 우리 모델을 개발하는데 활용된 영감”이라며,
“우리 모델은 상대적으로 간단한 물리학을 포함하지만,
생물학에서의 광범위한 관측 결과와 일치한다”고 밝혔습니다.
게이버 교수에 따르면 이는 매우 드문 경우로서,
만약 자신들의 모델로 계속 실험을 한다면 이론과 관찰 사이에서 더욱 많은 합의를 찾아내고,
자연의 내부 작용에 대한 풍부한 통찰력을 얻을 수 있다는 것입니다.
연구팀은 모델을 구축하기 위해
네트워크 물리학을 직접 생물학의 복잡한 세부사항에 적용했습니다.
그리고,
이를 통해 매우 다양한 광합성 유기체들에 대해,
명확하고 정량적이며 일반성 있는 서술을 할 수 있었습니다.
광합성 관련 최초의 정량적 물리 모델
게이버 교수는 광합성을 부엌의 싱크대에 비유했습니다.
수도꼭지가 물을 흘리면 배수관을 통해 밖으로 흘러갑니다.
만약 싱크대로 들어오는 물이 나가는 물보다 훨씬 많으면 넘쳐서 바닥으로 쏟아지게 됩니다.
그는 “광합성에서 빛 수확 네트워크로 들어가는 태양력의 흐름이,
나가는 것보다 과도하게 크면, 광합성 네트워크가 갑자기 흘러넘치는 에너지를
줄일 수 있도록 적응해야 한다”며, “네트워크가 이런 변동을 제대로 관리하지 못하면 유기체는
여분의 에너지를 방출하려 하고, 유기체는 그렇게 함으로써 산화 스트레스를 겪게 돼
세포가 손상된다”고 설명했습니다.
연구팀은 그들의 모델이 매우 일반성이 있고 간단한 것에 놀랐다고 합니다.
게이버 교수는 “자연은 항상 당신을 놀라게 하는데,
매우 복잡하고 복합적으로 보이는 것일지라도 몇 가지 기본적인 규칙에 따라 작동한다”며,
“우리는 이 모델을 다른 광합성 환경에서 정확한 흡수 스펙트럼을 재생산하고 있는 유기체들에 적용했다”고
말했습니다.
그는 “생물학에서는 모든 규칙에 예외가 있어 규칙을 찾는 것이 통상 매우 어려운데,
우리는 놀랍게도 광합성 유기체들의 규칙 하나를 발견한 것으로 생각된다”고 덧붙였습니다.
게이버 교수에 따르면
광합성 연구는 지난 수십 년 동안 주로
광합성 과정에서의 미세 구성요소의 구조와 가능에 초점이 맞춰졌습니다.
생물학자들은 유기체가 외부 조건을 거의 통제할 수 없다는 사실을 고려할 때
생물학적 시스템이 일반적으로 정교하게 조정되지 않는다는 것을 잘 알고 있다는 것.
그는 “이런 모순은 지금까지 미세 과정과
거시적 속성을 연결 짓는 모델이 존재하지 않았기 때문에 해결되지 않았다”고 설명하고,
“우리 연구는 이런 모순을 다루는 최초의 정량적 물리 모델을 대표한다”고 강조했습니다.
'자기계발 > 읽어보는 잡학지식' 카테고리의 다른 글
임플란트... 꼭 해야 할까요? (0) | 2023.06.28 |
---|---|
남자의 가장 흔한 거짓말 (0) | 2023.06.27 |
[MBTI 성격 유형] 부드럽고 친철한 이타주의 중재자 INFP (0) | 2023.06.26 |
[MBTI 성격 유형] 희귀한 성격의 옹호자 INFJ (0) | 2023.06.26 |
[MBTI 성격 유형] 두뇌 회전이 빠르고 대담한, 변론가 ENTP (0) | 2023.06.26 |